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A B S T R A C T

Central air conditionings (CACs) deployed in large-scale commercial buildings have consumed a large amount of
energy in cities. Growing attention has been expressed in their operating efficiency improvement and demand
response (DR) participation to facilitate energy conservation and supply–demand balance. To tackle these
challenges, a chance constrained economic dispatch approach is developed for CACs, aimed at optimizing their
operation scheduling while accounting for DR participation. Firstly, the economic dispatch framework is
established to harness capacity reserves, thermal inertias, and chance constraints to deal with cooling load
uncertainties, accompanied by a three-stage DR strategy aimed at augmenting response potential. On this basis,
the operation scheduling of CACs is formulated as an optimization problem to minimize overall operating costs
considering DR incomes. To solve the problem, the energy-temperature transformation model is developed to
quantify available thermal inertias and DR capacities within user comforts. Additionally, chance constraints are
converted to specific reserve requirements, to prevent inappropriate dispatches caused by severe but rare
forecast errors. Furthermore, the feasible regulation region is designed to coordinate capacity reserves and
thermal inertias in response to cooling load forecast errors. Lastly, case studies are conducted using realistic data
from commercial buildings, validating the effectiveness of dispatch on operating efficiency improvement, fore-
cast uncertainty accommodation, as well as contributions to DR provision.

1. Introduction

Energy consumed by the building sector contributes to approxi-
mately 36 % of global energy demand [1], which is expected to continue
increasing with the development of the economy and society [2].
Especially, central air conditionings (CACs) are customarily used in
large-scale commercial buildings, e.g., hotel and office buildings, to
provide chilled water for space cooling owing to significant cooling
capacities, taking up about 50 % of energy proportions within buildings
[3]. Meanwhile, the growing penetration of renewable energies in
power systems poses challenges to real-time supply–demand balance
because of their inherent generation uncertainties [4]. Focusing on the
potential supply–demand mismatch risks, Xie and Billinton proposed the
unreliability tracing theory to efficiently recognize the critical and weak
regions [5]. On this basis, power systems are eager for more flexible
regulation capacities in insufficiency regions, which can exactly be
provided by CACs due to the large power consumption and thermal
inertia [6]. Considering their unique measurement and control advan-
tages over residential air conditionings, it becomes more competitive to

realize economic dispatch (ED) and demand response (DR) participation
of CACs to facilitate both operating efficiency improvement and
renewable energy accommodation.

To promote the sustainable future, a lot of researchers are attracted
to investigate new technologies and strategies for CACs with the aim of
improving operating efficiency. For instance, Syed et al. [3] presented
an adaptive regression model-based strategy to improve the energy ef-
ficiency of CACs. Yu et al. [7] proposed a distributed iterative optimi-
zation algorithm for chilled water pipe networks, saving energy
consumption up to 28.54 %. In terms of large buildings with dramatic
cooling demand, central chiller plants with multiple chillers were widely
used to satisfy cooling requirements, which are also the major energy-
consuming equipment of the CAC systems. Recently, various ap-
proaches, such as sequencing control (SC), partial load ratio (PLR)
control, and temperature setpoint control, have been utilized to opti-
mize the operation of multi-chiller plants [8]. Among them, SC control is
normally implemented in multi-chiller plants to determine the startup
and shutdown (SUSD) scheduling of chillers, in response to cooling load
fluctuations and PLR variations [9]. In [10], the impacts of multi-chiller
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plant design were evaluated with the aim of further improving energy
efficiency on the basis of the SC method. Liao and Huang [11] proposed
a hybrid predictive SC strategy, integrating autoregressive with exoge-
nous prediction to double-check the necessity of SC commands, so as to
avoid frequent control caused by trivial loads. Unfortunately, the SUSD
procedures of chillers are nearly taken into consideration in previous
research, like SUSD costs and physical constraints, which may result in
lower economic efficiency, worse cooling performance, and even dam-
age to chillers.

Despite the operating efficiency improvement, contributions of
large-scale buildings to DR are also repeatedly emphasized in recent
years [12], especially in urban cities where flexible regulation resources
are extremely insufficient [13]. DR programs are designed to alter or
shift energy usage at demand sides to solve short-time power imbalance,
preventing investing more regulation resources, e.g., gas turbine gen-
erators [14]. Therefore, DR is a promising alternative to enhance the
regulation flexibility of power systems [15]. Since buildings play an
increasingly important role in the energy sector of urban cities,
exploiting their potential in power adjustments is able to effectively
cope with fluctuations in both renewable energy generation and load
consumption [16]. Benefiting from inherent thermal inertias and
building envelopes, the operating power of CACs can be adjusted for a
short time without noticeable temperature variations. Much research
has been conducted to explore their DR potential. A data-driven
approach was investigated to evaluate the operating DR potential in
[17], but it focused on residential air conditionings with small capacity
and large populations. Xiong et al. developed a simplified improved
transactive control strategy to provide DR by adjusting the room set-
point temperature [18], while the temperature control made it diffi-
cult to realize accurate DR provision. Xie et al. proposed a two-layer
coordinated control to aggregate multiple CACs in different buildings
to provide regulation services [13], yet the inner coordination of mul-
tiple chillers was not accounted for. Besides, the optimization of DR
capacity allocation between chillers is also crucial to increase efficiency
compared with arbitrary assignments with respect to operating power.
Pilot works mainly allocate the regulation or DR capacities based on
consensus theory, Hong et al. [19] put forward an event-triggered
consensus control to achieve the same regulation objective and
response speed of large-scale air conditionings. Li et al. [20] presented a
consensus-based energy management for microgrids to guarantee their
stability and scalability. Nevertheless, these consensus-based allocation
methods aim to achieve equilibrium and unification for different users
and equipment, which are not suitable for these chillers within a plant.

Consequently, there are two critical obstacles that need to be over-
come before integrating DR participation into the multi-chiller plant
optimization, meeting the interests of both power systems and buildings.
Firstly, the tradeoff process of ED among thermal comfort, coefficient of
performance (COP), and DR performance should be handled appropri-
ately. The load-sharing operation strategy was proposed in [21] to
improve the aggregate performance by optimizing the COP of different
chillers. However, some potential disadvantages of SUSD are not taken
into consideration, e.g., the energy loss caused by the SUSD procedures.
In addition, accommodating forecast errors derived from multiple un-
certainties is also a challenging problem, many researchers devoted
much effort to the improvement of forecast accuracy. A novel energy
demand prediction approach was presented in [22] to achieve better
prediction accuracy, by combining operating data and empirical
knowledge. To some extent, the demand uncertainty can never be
mitigated entirely, thereby works with regard to reserve allocation have
been investigated recently. For example, Saeedi et al. [23] proposed a
robust optimization to deal with the cooling demand uncertainty.
However, the robust results are always over-conservative and increase
reserve costs. Different from power systems, the cooling process does not
need to maintain a strict supply–demand balance, and thermal comforts
are not violated with a short period of mismatch. As a result, it is vital to
allocate appropriate reserves to accommodate forecast errors, by

making the most of the thermal inertia and insulation potential.
Focusing on improving operating efficiency and participating in DR,

this paper presents an economic dispatch approach for multi-chiller
CACs, coordinately utilizing capacity reserves, thermal inertias, and
chance constraints to deal with intrinsic cooling load uncertainties. The
main contributions of this paper are as follows:

1) To address the limitations of the conventional methods in managing
cooling load fluctuations, specific capacity reserves and DR pro-
visions are determined in the day-ahead operating scheduling to
mitigate unnecessary SUSD procedures, accompanied by the three-
stage DR strategy aimed at augmenting response potential.

2) Leveraging the insensitivity to slight temperature variations, a
temperature-energy transformation (TET) model is developed to
quantify thermal inertias within user comforts. Additionally, a
feasible regulation region is designed to coordinate capacity reserves
and thermal inertias in response to cooling load fluctuations.

3) Chance constraints are further introduced to prevent inappropriate
dispatches caused by severe but rare forecast errors. The chance
constrained optimization problem is solved by converting the un-
certain probability constraints into specific reserve requirements,
and then defining that only errors within capacity reserves necessi-
tate complete responses.

The remainder of the paper is organized as follows. Section II in-
troduces the specific ED framework and DR participation strategy of
CACs considering forecast uncertainties. The ED of CACs composed of
multiple chillers is formulated as an optimization problem in Section III.
The developed TET model and the feasible regulation region are pre-
sented in Section IV. Section V introduces the simulation results of
several case studies. Finally, the main conclusions are summarized in
Section VI.

2. ED framework of CACs considering forecast uncertainties and
DR participation

Considering the variations and uncertainties of cooling load within a
day, ED of CACs aims to achieve the minimum operating costs consisting
of operating costs, SUSD costs, and DR income, by determining the SUSD
scheduling and optimizing chillers’ PLR.

2.1. Framework of economic dispatch for CACs

In terms of large buildings with substantial space cooling demands,
multi-type and multi-chiller plants are widely implemented, making full
use of the characteristics of different chillers to accommodate compli-
cated operating conditions. To improve the overall energy conversion
efficiency, optimizing the SUSD scheduling and corresponding PLR is
more important for multi-chiller plants compared to single-chiller CACs.
Hence, critical parameters, including the COP-PLR curves and the SUSD
costs, should be involved in the total operating costs optimization to
allocate cooling capacities among chillers.

As shown in Fig. 1, the forecast cooling load is represented by the
blue dot-dash line, and distribution intervals of forecast errors are
indicated by the gradient blue area. To cope with the uncertainty of
forecast errors and DR participation, the CACs need to reserve appro-
priate upward and downward capacities to track the varying cooling
demand, where the black solid lines are the maximum and minimum
cooling capacities under such a chiller scheduling. For deterministic
scheduling methods, the forecast errors should be strictly restrained
within the regulation regions of chillers to guarantee the cooling de-
mand can be satisfied. Nevertheless, the over-conservative scheduling
will lead to a noticeable COP decrease caused by inappropriate oper-
ating conditions.

In fact, short-time supply–demand mismatches with preset proba-
bilities (like red star point A) are allowable. Inherent thermal inertias of
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buildings can prevent fast temperature variations when there are cool-
ing capacity deviations. To adapt to various thermal comforts, users can
choose the preferable indoor temperature intervals and the allowable
probability of temperature violations in advance. As a result, the critical
challenges are to quantify the thermal inertias derived from temperature
intervals and determine the capacity reserves according to violation
probabilities. To be specific, the temperature intervals should be trans-
formed into available thermal inertias based on the proposed TET model
first. Meanwhile, the upward and downward boundaries of load fluc-
tuations under specific probabilities should be estimated in response to
forecast error distribution. Lastly, the critical information including
thermal inertias and fluctuation boundaries will be input into the ED
optimization model, which will schedule the SUSD procedures and
allocate cooling capacities among chillers to mitigate cooling load
fluctuations.

2.2. Forecast uncertainty description and thermal comforts requirements

The forecast cooling loads are the basis of ED optimization, there are
a lot of methods predicting cooling loads based on historical data.
Assuming the forecast cooling load results have been obtained in
advance, the cooling load at time t is denoted by Dtpred. Considering
forecast errors can never be mitigated entirely, the relationship between
forecast values and realistic values Dtreal can be expressed as follows [24]:

Dtreal = Dtpred+ ẽt (1)

where ẽt is the forecast cooling load error.
Usually, the relevant forecast errors obey the normal distribution

whose mean value is equal to zero [25]:

ẽt
/

Dtpred ∼ N
(
0, σ2) (2)

where σ is the variance of the relevant forecast error.
Thermal comforts are the critical criterion to reflect the CAC’s per-

formance from the perspective of users. Benefiting from thermal in-
ertias, indoor temperature will not vary dramatically when the cooling
supply mismatches the cooling demand. As a result, the intrinsic thermal
preservation of buildings delivers the potential energy elasticity: i) The
SUSD should not be triggered by short-time cooling load variations to
avoid extra costs; ii) DR capacity can be provided by adjusting operating
power within a short period.

In terms of the building with set temperature Tsetin , to meet the space
cooling requirements without sacrificing significant thermal comforts,
the real-time indoor temperature Ttin should be constrained within the
preset interval:

Tmin
in ⩽Ttin⩽T

max
in (3)

where Tmin
in and Tmax

in represent the minimum and maximum tempera-
tures of the preset interval, respectively.

2.3. Three-stage demand response participation strategy

To mitigate the short-term supply–demand mismatch, DR programs
are carried out to extract the power flexibility at the demand side. The
multi-chiller plants of CACs contribute to considerable energy con-
sumption in buildings, which can provide substantial DR capacity
benefiting from thermal inertia and temperature tolerance. To cope with
the time scale of the operation scheduling, CACs participate in day-
ahead DR programs, reserving enough time to allocate DR capacities.
Let DTDR denote the time duration of DR, two typical DR programs are
introduced as follows:

2.3.1. Upward regulation
The CACs should increase the power to consume extra electricity and

the indoor temperature will decrease, e.g., at noon when the photovol-
taics are harvested.

2.3.2. Downward regulation
The CACs need to decrease the power to reduce the energy con-

sumption and the indoor temperature will increase, e.g., in the afternoon
when the energy demands are growing rapidly.

In order to maximize the regulation potential of CACs without
affecting the thermal comforts of users, a three-stage DR strategy is
proposed in this subsection, namely the pre-regulation stage, the DR-
regulation stage, and the post-regulation stage, respectively. The pre-
regulation stage and the post-regulation stage aim to expand regula-
tion capacity and restore the initial state, respectively. Usually, the
duration time of DR is set as 1 h following the CACs’ characteristics and
programs’ requirements. To prevent fast temperature variations and
severe recovery rebounds, the pre-regulation stage and post-regulation
are also set as 1 h. Taking the downward regulation as an example, the
CACs will increase the operating power to realize pre-cooling and store
cooling capacity during the pre-regulation stage, accompanied by the
corresponding temperature decrease as shown in Fig. 2. Consequently,
the available interval of temperature rise is doubled from

(
Tmax
in − Tsetin

)
to

(
Tmax
in − Tmin

in
)
, which can provide extra capacity during the DR-

regulation stage by accumulating more heat in rooms. In the post-
regulation stage, the operating power is higher than that of the base-
line, so as to restore the indoor temperature to the preset value.

Denoting ΔPt,+(− )

AC,i as the DR capacity provided by the i-th chiller at
time t, the corresponding power adjustments in pre-regulation and post-
regulation can be indicated by ΔPt− DTDR ,+(− )

AC,i and ΔPt+DTDR ,+(− )

AC,i , respec-
tively. Considering the COP-PLR characteristics, a given DR capacity can
never be simply allocated to operating chillers in accordance with their
power consumption ratios. Specific optimization of DR allocation will be

Fig. 1. The framework of economic dispatch for multi-chiller CACs.
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introduced in Section III.

3. Chance constrained economic dispatch problem formulation

The ED of CACs needs to determine the chillers’ SUSD scheduling to
allocate sufficient reserves in response to uncertain cooling load fluc-
tuations, then further optimize the PLRs of chillers to minimize the
overall operating costs with DR participation.

3.1. Objective function

The objective of ED is to determine the optimal SUSD scheduling and
allocate cooling loads for multiple chillers, so as to minimize the overall
operating costs composed of (i) energy costs, (ii) SUSD costs, and (iii) DR
incomes:

min
∑tend

t=1

[
∑NAC

i=1

(
ECti + SUSD

t
i
)
− DRt

]

(4)

where tend is the end time of optimization; NAC is the number of chillers.

3.1.1. Energy costs
The energy costs mirror the electricity consumed by chillers to pro-

vide chilled water, which mainly depends on the partial load rate (PLR)
and their rated power.

ECti = PLRti ⋅P
rated
AC,i ⋅ρte (5)

PLRti = PtAC,i
/
PratedAC,i × 100% (6)

where PtAC,i and PratedAC,i are the real-time operating power and the rated
power of i-th chiller, respectively; PLRti is the partial load rate of i-th
chiller; ρte is the electricity price per kW.

COP is the critical index to reflect the energy conversion efficiency
from electricity to cooling capacity, which is mainly related to the PLRti
and can be approximately expressed by the cubic function as follows
[11,26]:

QtAC,i = COPti ⋅P
t
AC,i (7)

COPti = ai
(
PLRti

)3
+ bi

(
PLRti

)2
+ ciPLRti + di (8)

where QtAC,i is the real-time cooling load of i-th chiller; ai, bi, ci, di are
the coefficients of the COP-PLR function.

3.1.2. SUSD costs
The SUSD costs are derived from the startup and shutdown proced-

ures, where the chiller is still consuming energy, but little cooling ca-
pacity is provided. In the aforementioned works, the SUSD cost is
usually ignored. However, inappropriate SUSD scheduling will also lead
to substantial costs, especially when there are massive cooling demand
oscillations.

SUSDti = SUti + SD
t
i (9)

SUti = max
[
sui

(
sti − s

t− 1
i

)
,0
]

(10)

SDti = max
[
sdi

(
st− 1
i − sti

)
,0
]

(11)

where SUti and SDti indicate the startup cost and the shutdown cost,
respectively; sui and sdi are the electricity fees for SUSD processes,
respectively; sti is the 0–1 variable that represents the operating state of i-
th chiller at time t.

3.1.3. DR incomes
When providing DR capacity to power systems, the CACs can obtain

the corresponding subsidy, whose price per kWh usually is much higher
than that of electricity. The total DR incomes depend on the DR capacity
and the DR price.

DRt = st,+DR,iρ
t,+
DR

∑NAC

i=1
ΔPt,+AC,i+ s

t,−
DR,iρ

t,−
DR

∑NAC

i=1
ΔPt,−AC,i (12)

where ρt,+DR and ρt,−DR denote the DR price per kW of up-regulation and
down-regulation, respectively; ΔPt,+AC,i and ΔPt,−AC,i represent the power in-
crease and decrease of i-th chiller, respectively; st,+DR,i and st,−DR,i are 0–1

Fig. 2. The specific DR Processes of CACs.
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variables, indicating the states of DR participation.

3.2. Operation constraints

3.2.1. Cooling demand constraints

∑NAC

i=1
PtAC,iCOP

t
i = Dtpred (13)

where Dtpred indicates the forecast total cooling demand at time t. It
should be noted that the equation (13) represents the supply–demand
balance in the ideal case for the day-ahead schedule. During the real-
time operation, the operating power of chillers will be changed with
respect to the realistic cooling demand.

3.2.2. Chiller constraints

PtAC,i+ s
t,+
DR,iΔP

t,+
AC,i⩽s

t
iP

max
AC,i (14)

PtAC,i − s
t,−
DR,iΔP

t,−
AC,i⩾s

t
iP

min
AC,i (15)

where Pmax
AC,i and Pmin

AC,i represent the maximum and minimum operating
power of i-th chiller, respectively. Equations (14)-(15) guarantee that
the operating power of chillers will not violate the maximum and min-
imum power constraints during three-stage DR participation.

3.2.3. Minimum on and off time constraints
Considering the physical characteristics of chillers, the SUSD pro-

cedures should take some time to finish several default steps, avoiding
bad effects such as surges. Besides, reducing unnecessary SUSD pro-
cedures can reduce energy consumption, and restrain systems fluctua-
tions [11]. Hence, the chillers must remain on or off states for preset
consecutive time periods after SUSD commands.

∑t+DTon − 1

j=t
sji⩾DTon

(
sti − s

t− 1
i

)
, ∀t ∈ [1, tend − DTon + 1] (16)

∑tend

j=t

[
sji −

(
sti − s

t− 1
i

)
]⩾0, ∀t ∈[tend − DTon + 2, tend] (17)

∑t+DToff − 1

j=t

(
1 − sji)⩾DToff

(
st− 1
i − sti

)
, ∀t ∈

[
1, tend − DToff + 1

]
(18)

∑tend

j=t

[
1 − sji −

(
st− 1
i − sti

)
]⩾0, ∀t ∈

[
tend − DToff + 2, tend

]
(19)

where DTon and DToff are the minimum consecutive time periods
after SUSD procedures, respectively.

3.2.4. DR participation constraints
The specific DR capacity and response time periods should be

determined and submitted to the operator of power systems. According
to the proposed DR participation strategy, the power adjustments of
chillers need to satisfy the following requirements.

∑NAC

i=1
st,+DR,iΔP

t,+
AC,i −

∑NAC

i=1
st,−DR,iΔP

t,−
AC,i = ΔPtDR (20)

st,+DR,i + s
t,−
DR,i⩽1 (21)

where ΔPtDR represents the total DR capacity. The positive value and the
negative value mirror the upward regulation and downward regulation,
respectively.

Equation (21) limits that only one type of DR capacity can be pro-
vided at the same time. However, it is worth noting that different chillers

can provide different types of DR regulation at the same time. For
clarity, when the multi-chiller plants are delivering upward regulation
DR, part of the chillers still can provide downward regulation DR as long
as the sum of chillers equals the total DR capacity, which is beneficial for
improving the overall operating efficiency. As a result, the specific types
and capacities of DR for every chiller also will be optimized in the
proposed ED instead of straightforward allocation according to power
ratios.

3.2.5. Operating reserve constraints
When the actual cooling load deviates from its forecast value, there

should be sufficient upward and downward reserves of cooling capacity
to meet the space cooling demands. Different from the conventional
PLR-based SC control or robust control, the supply–demand imbalance
can be accessible with low probability, since the indoor temperature will
not vary notably by utilizing thermal inertia. Consequently, the reserve
constraints can be formulated as follows:

Pr

[

Qt,+inertia +
∑NAC

i=1
COPti

(
Rest,+i − st,+DR,iΔP

t,+
AC,i

)
⩾ẽt

]

⩾1 − αup (22)

Pr

[

Qt,−inertia +
∑NAC

i=1
COPti

(
Rest,−i − st,−DR,iΔP

t,−
AC,i

)
⩾ẽt

]

⩾1 − αdown (23)

Rest,+i = sti
(
Pmax
AC,i − P

t
AC,i

)
(24)

Rest,−i = sti
(
PtAC,i − P

min
AC,i

)
(25)

where Pr(⋅) represents the probability function; Qt,+inertia and Qt,−inertia are the
equivalent upward and downward provided by thermal inertias,
respectively; Rest,+i and Rest,−i denote the upward and downward re-
serves, respectively; αup and αdown are the maximal allowable probabil-
ities of upward and downward reserve insufficiency, respectively.

4. Economic dispatch procedures

In order to solve the optimization, the TET model is established to
quantify the maximum DR capacities and thermal inertias under the
given thermal comfort constraints, and chance constraints are converted
to specific requirements on capacity reserves according to allowable
insufficiency probabilities. Finally, the feasible regulation region is
designed to coordinate different resources to accommodate the cooling
load uncertainties.

4.1. Temperature energy transformation model

In terms of water-system CACs, the real-time cooling demand satis-
fied by the multi-chiller plants can be expressed as follows:

∑NAC

i=1
PtAC,iCOP

t
i = mt

swcw
(
Ttsi − T

t
so
)

(26)

where mtsw represents the mass flow of water; cw indicates the specific
heat of water; Ttsi and Ttso mirror the inlet and outlet temperature,
respectively.

According to equation (26), the cooling capacity depends on the
mass flow of water, inlet temperature, and outlet temperature. It is very
complicated to analyze the temperature variations when supply cooling
capacity mismatches the cooling demand, especially during the DR
period. Consequently, the variable water flow control is implemented to
guarantee the inlet and outlet temperatures are stable. In other words,
the variation of operating power only affects the water flow, and the
temperature of chilled water can be regarded as stable at different lo-
cations. For the end air handling unit, the supply cooling capacity can be

T. Qi et al.
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expressed as follows [27]:

Qtroom = λcoe⋅mt
wind⋅cair⋅

(
Ttchill,w − Ttin

)
⋅mt

sw (27)

where Qtroom is the cooling capacity for the room; λcoe indicates the wind
speed to the infiltration rate; mtwind is the wind speed of the room; cair is
the specific heat of air; Ttchill,w represents the real-time chilled water
temperature at this air handling unit; Ttin is the indoor temperature.

Assuming the wind speed mtwind and infiltration rate λcoe are constant
and neglecting the minor variations of indoor temperature, the cooling
capacity for rooms is regarded as linear with chilled water flow, as well
as the total cooling capacity.

Qtroom∝mt
sw∝

∑NAC

i=1
PtAC,iCOP

t
i (28)

On this basis, rooms within a building can be regarded as a whole
space, because the power regulation has similar effects on cooling ca-
pacity in different rooms. Hence, the equivalent thermal parameters
model can be used to depict the dynamic process of indoor temperature
[28].

Ceq
dTtin
dt

=
Ttout − Ttin
Req

+Qtocc − D
t
pred (29)

Dtpred =
∑NAC

i=1
PtAC,iCOP

t
i (30)

where Ceq and Req denote the equivalent thermal capacity and thermal
resistance of the building, respectively; Ttout represents the ambient
temperature, which can be obtained from weather forecast; Qtocc mirrors
the other thermal loads derived from people, equipment, solar, etc.; Dtpred
is the forecast cooling demand based on historical data.

In the day-ahead operation scheduling, the ED mainly concentrates
on the stable states at every timestep. If the cooling supply and cooling
demand achieve balance, the indoor temperature will be stable at Tsetin .
As a result, the dTtin/dt at left-hand is equal to zero, and the other
thermal loads Qtocc and the heat exchange Qtexc can be obtained as fol-
lows:

Qtocc =
∑NAC

i=1
PtAC,iCOP

t
i − Q

t
exc (31)

Qtexc =
Ttout − Tsetin

Req
(32)

Based on the established TET model, the specific DR capacity can be
determined with respect to the allowable temperature intervals.
Generally, the DR subsidy per kW is much higher than the electricity
price. Hence, buildings always tend to provide more DR capacity within
thermal comforts, aiming to minimize the total operation costs. Taking
the downward DR as an example, the maximum DR capacity can be
obtained by solving the minimum cooling capacity of the chillers ac-
cording to equations (3) and (29)-(32).

ΔPt,−DR ⋅COPtavg = Dtpred − Q
t
occ −

Ttout
Req

−
Tmin
in e−

DTDR
ReqCeq − Tmax

in

Req

⎛

⎜
⎝1 − e−

DTDR
ReqCeq

⎞

⎟
⎠

(33)

COPtavg = Dtpred

/
∑NAC

i=1
PtAC,i (34)

Similarly, the corresponding power adjustments in the pre-
regulation and post-regulation stages can be calculated as follows:

ΔPt
ʹ,+
DR ⋅COPtʹavg = Dtʹpred − Q

tʹ
occ −

Ttʹout
Req

−
Tsetin e

−
DTDR
ReqCeq − Tmin

in

Req

⎛

⎜
⎝1 − e−

DTDR
ReqCeq

⎞

⎟
⎠

(35)

ΔPt
ʹ́ ,+
DR ⋅COPtʹ́avg = Dtʹ́pred − Q

tʹ́
occ −

Ttʹ́out
Req

−
Tsetin e

−
DTDR
ReqCeq − Tmin

in

Req

⎛

⎜
⎝1 − e−

DTDR
ReqCeq

⎞

⎟
⎠

(36)

tʹ = t − DTDR, tʹ́ = t+DTDR (37)

4.2. Reserve determination considering thermal inertias and chance
constraints

To guarantee thermal comforts, indoor temperature should be
restricted within the preset temperature interval. However, the tem-
perature interval cannot be directly used in the optimization. Hence,
quantifying the flexibility of power adjustments is dispensable. Based on
the established TET model, the preset temperature interval can be
transformed to thermal inertias that can be regarded as equivalent ca-
pacity reserves, so as to reduce reserves provided by chillers. Therefore,
the upward and downward thermal inertias in equations (22) and (23)
can be calculated as follows:

Qt,+inertia = Dtpred − Q
t
occ −

Ttout
Req

−
Tsetin e

−
ΔDT
ReqCeq − Tmax

in

Req
(
1 − e

− ΔDT
ReqCeq

) (38)

Qt,−inertia = Dtpred − Q
t
occ −

Ttout
Req

−
Tsetin e

−
ΔDT
ReqCeq − Tmin

in

Req
(
1 − e

− ΔDT
ReqCeq

) (39)

where ΔDT is the timestep of dispatch and optimization.
Furthermore, the specific boundaries with the allowable insuffi-

ciency probabilities in equations (22) and (23) should be determined to
solve the chance constrained optimization. Assuming the relative fore-
cast errors of cooling load obey the normal distribution, the probability
density function of forecast error can be illustrated in Fig. 3 (a). In terms
of equation (22), there will be a value Kα satisfying the following
equation with a determined confidence coefficient αup:

Pr
[

Kupα ⩾ẽt
]

= 1 − αup = Φ
(
Kupα

)
(40)

Φ
(
Kupα

)
=

∫ Kupα

− ∞
Pr
(

ẽt
)

(41)

where Φ(⋅) is the probability distribution function.
As shown in Fig. 3 (a), Φ

(
Kupα

)
is the integration of the shadow area.

Apparently, equation (22) is satisfied if and only if equation (42) is
satisfied:

Qt,+inertia+
∑NAC

i=1
COPti

(
Rest,−i − st,−DR,iΔP

t,−
AC,i

)
⩾Kupα (42)

To maximize the feasible regulation region, the minimum value that
satisfies Kupα = Φ− 1( 1 − αup

)
will be chosen.

Kupα = inf
{
K|K = Φ− 1( 1 − αup

)}
(43)

Similarly, Kdownα can be determined using the method. Finally, the
day-ahead ED problem can be formulated as a mixed integer quadrati-
cally constrained programming (MIQCP) problem by transforming the
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COP-PLR curves to piecewise linear expression, which can be solved by
various commercial solvers such as GUROBI.

4.3. Intra-day coordinate operation based on feasible regulation region

Although the SUSD scheduling and corresponding PLRs are opti-
mized based on the forecast cooling demand, the forecast errors can
never be eliminated. Consequently, CACs also need to further adjust
cooling capacity to accommodate forecast errors in intra-day realistic
operation. Hence, the feasible regulation region is designed to further
dispatch the CACs with the aim of coordinating capacity reserves,
thermal inertias, and chance constraints.

Firstly, the SUSD scheduling will not be changed unless extreme
weather conditions occur. The specific DR capacity and regulation
period are also confirmed in advance. The intra-day optimization
objective is to minimize the energy costs at every dispatch timestep:

min
∑NAC

i=1
ECti , ∀t ∈ [1, tend] (44)

When confronting forecast errors in the intra-day operation, CACs
need to adjust cooling capacity to maintain the indoor temperature. In
most conventional control approaches, the optimal capacity adjustments
should be equal to the forecast errors, which are represented by the
black solid line in Fig. 3 (b). In this paper, there are three resources and
strategies for eliminating the deviations: i) Cooling capacity reserves:

the PLRs of chillers can be regulated to realize upward and downward
adjustments; ii) Thermal inertias: the equivalent reserves derived from
thermal inertias can be utilized to reduce adjustments of chillers; iii)
Allowable insufficiency probability: the supply–demand mismatch is
acceptable with the preset probability when there are severe but rare
deviations. The coordination of the three resources and strategies is
demonstrated in Fig. 3 (b).

The black solid line is the optimal adjustment curve, in which cooling
capacity adjustments are equal to the forecast errors like the red star
point. Benefiting from thermal inertias, the adjustments are not required
to strictly match the errors. When forecast errors are within the interval
[
Kdownα ,Kupα

]
obtained by allowable insufficiency probabilities, the

equivalent reserves derived from thermal inertia can be utilized. The
constraints can be expressed as follows:

ΔQtadj+Q
t
inertia = ẽt ,Kdownα ⩽ẽt⩽Kupα (45)

where ΔQtadj and Qtinertia are cooling capacity adjustments and reserve
capacity derived from thermal inertia, respectively.

It should be noted that thermal inertias are always utilized to reduce
the effects caused by forecast errors. To be specific, the positive forecast
error means that more cooling capacity is expected to increase to limit
the temperature growth, so the downward thermal inertia instead of the
upward thermal inertia is used to reduce the capacity adjustment.
Similarly, only the upward thermal inertia is utilized when the forecast
error is negative. Consequently, the upward and downward thermal

Fig. 3. The feasible regulation region responsible for forecast errors: (a) probability density of forecast errors; (b) response strategy coordinating capacity reserves,
thermal inertias, and chance constraints.
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inertias have formulated the regulation boundaries, which are repre-
sented by the black dot-dashed lines. Moreover, Qtinertia is also a decision
variable to be optimized. How much thermal inertia is used can be
adjusted with the aim of reducing energy costs. To avoid overuse of
thermal inertia, the thermal inertia and cooling capacity adjustments
need to satisfy:

Qt,−inertia⩽Q
t
inertia⩽Q

t,+
inertia (46)

ΔQtadj ⋅̃et⩾0 (47)

Equation (47) requires that the cooling capacity adjustments and
forecast errors should be positive or negative values at the same time,
preventing the situation that the CACs are always likely to reduce the
cooling capacity. Consequently, the final adjustments can be chosen
within the feasible regions filled with light blue and pink colors in Fig. 3
(b).

Despite the capacity reserves and thermal inertias, chance con-
straints are further introduced to handle the severe but rare forecast
errors. The probability of severe errors is very low, so it is uneconomic to
reserve extra capacities to deal with low-possibility events. Therefore,
chance constraints are utilized to determine the required reserves under
the given insufficiency possibilities. Upon the forecast errors exceed the
interval

[
Kdownα ,Kupα

]
, the supply–demand mismatch is allowable, so the

cooling power adjustment will not increase continuously:
⎧
⎪⎪⎨

⎪⎪⎩

ΔQtadj + Q
t
inertia = Kupα

ΔQtadj + Q
t
inertia = Kdownα

ẽt⩽Kupα

ẽt⩽Kdownα
(48)

Additionally, chiller constraints (equations (14) and (15)), as well as
DR constraints (equations (20) and (21)) should also be satisfied. The
intra-day optimization still can be converted to an MIQCP problem.

5. Case study

In this section, simulations on a hotel building with 268,000 m2

cooling space in Macao, China, are conducted to validate the effective-
ness of the proposed chance-constrained ED for efficiency improvement
and DR provision.

5.1. Simulation parameters

The information of the building is shown in Table 1. The thermal
resistance can be estimated according to the cooling space [29]. The
average height of rooms is set as 3.5 m, so the thermal capacity of the
building can be obtained according to the volume of cooling space [30].
The temperature setpoint is set to be 24℃, and the allowable tempera-
ture interval is set as [23℃, 25℃] considering relatively high thermal
comforts requirements [31]. The maximal insufficiency probabilities of

upward reserve and downward reserve are set as 10 % uniformly due to
the lower requirements on real-time supply–demand balance [32].

The multi-chiller plants of CACs are composed of 2 types of chillers,
larger cooling capacity chillers with lower COP and smaller capacity
chillers with higher COP, whose specific information is shown in
Table 2. The coefficients of COP-PLR curves for two types of chillers are
obtained by fitting historical data, and their specific values can be found
in Table 2.

The timestep of ED is set as 15 min and there are 96 periods of a day.
Referring to the realistic data in the electricity market and ancillary
market in Guangdong province, the electricity price and DR subsidy are
set as 0.8262¥/kWh and 3.5¥/kWh, respectively. The downward DR will
be provided during 14:00–15:00 according to power systems re-
quirements. The following tests have been carried out using Python
3.11.7 and GUROBI 11.0.0 on the desktop with Intel Core i7 12700, the
day-ahead operation scheduling and intra-day one-step operation opti-
mization take about 630 s and 0.75 s, respectively.

5.2. Operating costs analysis of different strategies

To illustrate the effectiveness of the proposed ED on operating costs,
4 operating scenarios are set in this subsection: i) Scenario 1: the optimal
operation at every optimization time step without SUSD costs; ii) Sce-
nario 2: the PLR-based SC operation; iii) Scenario 3: the PLR-based SC
operation with the maximum operation region; iv) Scenario 4: the pro-
posed ED operation. Relevant costs and overall operating COPs are
shown in Table 3 and Fig. 4, respectively.

Optimal operation strategy aims to determine the optimal chillers
commitment and the corresponding PLR to minimize the energy costs at
every timestep, so as to provide the important baseline for estimating
the effectiveness of the economic dispatch. It should be noted that the
SUSD costs and physical constraints are not accounted for. Therefore,
the chillers need to start up and shut down very frequently to maintain
such a perfect COP, which can be revealed by the SUSD costs calculated
afterward. As shown in Table 3, the energy costs are 90,120¥, which can
be regarded as the minimum energy costs. The results can be easily
explained by the COP profiles in Fig. 4, the COP nearly maintains at the
highest value about 6.08 all the time. It can be seen that the actual SUSD
costs are 13,016¥ sharing 14.44 % of energy costs, proving that inap-
propriate SUSD procedures will lead to significant costs. As a conse-
quence, the balance between operating efficiency and SUSD costs is of

Table 1
Information of the building.

Floor area Average height Thermal resistance Thermal capacity Set Temperature Maximum Temperature Minimum Temperature

Value 268,000 3.5 4.58 × 10-4 3.39 × 102 24 25 23
Units m2 m ℃/kW kWh/℃ ℃ ℃ ℃

Table 2
Information of multi-type chillers.

Number Rated capacity Rated power Rated COP Minimum PLR Maximum PLR Coefficient

a b c d

Type 1 8 4,220 747 5.65 50 100 –23.59 37.98 − 13.25 4
Type 2 4 1,759 295 5.96 50 100 − 5.98 6.04 2.93 3
Units \ kW kW \ % % \ \ \ \

Table 3
Operating costs analysis among 3 operating scenarios.

Scenario Energy costs/¥ Startup costs/¥ Shutdown costs/¥

1 90,120 7,247 5,769
2 93,123 1,510 154
3 94,327 1,295 0
4 90,818 1,478 154

T. Qi et al.



Energy & Buildings 320 (2024) 114607

9

great importance.
The conventional PLR-based SC operation strategy usually de-

termines the SUSD procedures in response to the real-time PLR, which
can be realized by automatic or manual processes. When PLR exceeds
the upward threshold, e.g., 95 % in this paper, another chiller will be
started up to meet the cooling demand. Similarly, once the PLR is below
the downward threshold which is set as 70 %, one of the operating
chillers will be shut down to increase the overall PLR, avoiding lower
operating efficiency. Compared with scenario 1, the PLR-based SC
operation spends more energy costs due to the unavoidable operating
periods with lower COP. As shown in Fig. 4, the operating COP is always
lower than that of scenario 1 caused by the passive startup and shut-
down, especially during 00:00–06:00 and 22:00–00:00 periods, whose
minimum COP has reached 5.47. On the contrary, the startup and
shutdown costs are reduced significantly, which are only 20.84 % and
2.67 % of those in scenario 1, respectively.

To illustrate the potential effects caused by the threshold, the upper
threshold and lower threshold of the PLR-based SC operation are

changed from 95 % and 70 % to 99 % and 51 % in scenario 3, respec-
tively. It can be seen that the wider PLR region leads to lower operating
COP, because chillers will not be shut down even if the PLR is low. For
clarity, when the PLR is lower than 70 % and the COP reaches 5.47,
partial chillers are shut down to improve the operating COP in scenario
2. On the contrary, chillers will not be shut down in scenario 3, resulting
in a minimum COP of 5.36 and a continuous operating period with low
COP. Finally, the total energy costs of scenario 3 reach 94,137¥, which
increase by 1,204¥ compared to those of scenario 2, while the SUSD
costs decrease a little due to fewer startup and shutdown procedures.
Consequently, the total operating costs increase by 2.35 %, proving that
operating efficiency and reserve sufficiency are contradictory targets
when determining the width of the operation region.

In terms of the proposed ED method, the energy costs and SUSD costs
are uniformly optimized. As a result, the SUSD procedures are scheduled
in accordance with the whole-day operation instead of the real-time
PLR. In other words, the SUSD scheduling is more farsighted, so the
energy costs are saved effectively. Compared with scenario 2, the COP is

Fig. 4. The variations of COP in different scenarios.

Fig. 5. Reserve analysis of PLR-based SC considering the forecast uncertainty.
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optimized to keep at a much higher level with minor deviations of the
optimal COP profiles apart from several periods, thereby the total energy
costs saving has reached 2,305¥. Moreover, the unnecessary SUSD
procedures are also restrained like those in scenario 2, even startup costs
are a little lower. Briefly speaking, the proposed ED method can achieve
approximate optimal energy costs without extra SUSD costs.

5.3. Reserve adequacy analysis for day-ahead dispatch

In reality, the forecast errors of cooling demand can never be elim-
inated due to various uncertain factors such as time-varying population.
Consequently, the upward and downward cooling capacities should be
reserved to accommodate the cooling demand fluctuations, otherwise
the startup or shutdown actions will be taken. Therefore, the differences
between the PLR-based SC strategy and the proposed ED method are
further analyzed from the perspective of reserve adequacy for load un-
certainty in this subsection.

As shown in Fig. 5, the black dotted line indicates the operating
power according to forecast cooling demand. The light blue area

represents the feasible regulation region of chillers, whose upper
boundary and lower boundary are determined by the corresponding
SUSD thresholds. It is worth noting that the operating power profiles of
the two strategies have some differences, which are caused by the
operating COP variations under the same cooling demand. Obviously,
the reserve allocation of the PLR-based SC method makes it difficult to
trace the variations of cooling demand, because the SUSD operations are
always passively taken when the reserves are completely utilized.
Therefore, the conditions where reserves are insufficient can never be
prevented. For instance, smaller cooling demand fluctuations still lead
to insufficient downward reserve at 02:00.

For the conventional PLR-based SC, using a narrower feasible region
aims to shut down partial chillers when the PLR is low, so as to avoid
lower operating COP. The reserve insufficiency problem is more severe
for the PLR-based SC. In terms of scenario 3 as shown in Fig. 6, the upper
threshold and lower threshold are changed to 99 % and 51 %, respec-
tively. It can be seen that the insufficient downward reserve problem is
solved effectively due to a significant decrease in the lower threshold.
However, the upward reserve is still insufficient, since extra chillers are

Fig. 6. Reserve analysis of PLR-based SC with a wider operation region considering the forecast uncertainty.

Fig. 7. Reserve analysis of ED considering the forecast uncertainty.
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started up only when the PLR reaches the upper threshold.
Compared with the PLR-based SC method, the proposed ED method

mainly has 2 advantages as nicely shown in Fig. 7. Firstly, the feasible
regulation region is expanded dramatically, whose upper boundary and
lower boundary are determined by the rated maximum and minimum
operating PLRs. To be specific, the lower PLR is also acceptable within a
short period to avoid unnecessary SUSD procedures. Then, the SUSD
procedures are actively taken with respect to the trends of cooling de-
mand due to the strict reserve constraints. It can be seen that another
chiller will be started up once the upward reserves are insufficient at
8:00 and 14:00. Therefore, the upward and downward reserves can
better meet uncertainty requirements, so as to prevent unnecessary
SUSD procedures and reduce corresponding costs in intra-day realistic
operation.

5.4. Intra-day realistic operation with forecast errors

Because of the unavoidable uncertainty, the forecast errors can never

be eliminated, which puts forward strict requirements for day-ahead
dispatch. Adequate reserves not only can satisfy the cooling demand
but also can maintain higher operating efficiency. Consequently, the
intra-day realistic operations of the SC method and the ED method are
further analyzed in this subsection.

The detailed operating profiles of the PLR-based SC strategy are
shown in Fig. 8, there are random fluctuations compared with the
forecast cooling demand. In terms of the PLR-based SC method, the day-
ahead operation results have little guidance for the realistic operation,
because its critical parameter is still the PLR. Unfortunately, the frequent
cooling demand oscillations have led to similar variations for PLR, the
chillers will be started up or shut down continually to trace the short-
time demand fluctuations, especially when the PLR is located at the
thresholds. Besides, the thermal inertia is not fully utilized so the chillers
are always regulated to match the cooling demand as far as possible,
further aggravating the operating efficiency. Therefore, both startup and
shutdown costs have increased dramatically from 1,510¥ and 154¥ to
2,619¥ and 1,388¥ compared with the day-ahead operation. In addition,

Fig. 8. Realistic operation of the SC method.

Fig. 9. Realistic operation of the ED method.

T. Qi et al.



Energy & Buildings 320 (2024) 114607

12

more SUSD procedures also mean a decrease in efficiency, the energy
costs have increased by about 2.57 % to 95,606¥ as shown in Table 4.

On the contrary, the SUSD scheduling of chillers has been deter-
mined and adequate cooling capacity has been reserved for the uncer-
tainty by utilizing the proposed ED method. The intra-day operation
optimization concentrates on the adjustments of cooling capacity and
utilization of thermal inertia as shown in Fig. 9. Hence, there will not be
extra SUSD costs unless extreme conditions appear.

Specifically, the proposed ED method has taken full advantage of the
thermal inertia and chance constraint without influencing thermal
comforts noticeably. The detailed cooling capacity deviations and the
corresponding temperature variations are shown in Fig. 10. The light
blue and light orange columns represent the extra and missing cooling
capacity compared with the cooling demand, respectively. Under most
situations, the cooling capacity deviations are restrained within the
thermal inertia about 1,350 kW, and the specific utilizing capacity of
thermal inertia is also time-varying. Therefore, the indoor temperature
can also be maintained in the more comfortable intervals [23.5℃,
24.5℃]. However, there exists a point where the indoor temperature is
beyond the upper limit caused by the significant mismatch of cooling
capacity. At this moment, the chance constraints have made sense to
allow the deviations under the preset probability, otherwise, another
chiller needs to be started up just to satisfy such a short period of cooling
demand. Benefiting from the thermal inertia and chance constraints, the
energy costs of the ED strategy only increase to 91,689¥.

Consequently, the proposed ED strategy has better operating per-
formance under realistic operating conditions, which achieves 6.63 %
total cost savings compared with the SC.

5.5. DR contribution to power systems

Based on the intra-day realistic operation results in V.D, the DR
participation of CACs is further analyzed to validate the contributions to
power systems in this subsection. According to equations (33)-(37), the
power adjustments of the pre-regulation period, DR-regulation period,
as well as post-regulation period can be obtained, whose values are
− 180 kW, 360 kW, and − 180 kW, respectively.

The detailed capacity allocations of chillers are shown in Fig. 11

during the three-stage DR participation. Instead of simply dividing the
power adjustments by the percentage of operating power, the power
adjustments of chillers are allocated based on their operating charac-
teristics to achieve overall optimality. For clarity, regulating the oper-
ating power of a chiller may improve its efficiency if the latter PLR is
nearer the optimal value, so the critical problem is to dispatch chillers
coordinately, which is difficult to achieve using the conventional PLR-
based SC strategy.

It can be seen from Fig. 11 that there mainly exists three main fea-
tures: i) With respect to the same chiller, the upward and downward DR
capacity can never be provided at the same time; ii) Some chillers are
permitted to provide inverse DR capacity, e.g., chiller 2 with pink color
has provided upward capacity while the whole CACs are reducing
operating power at 14:45. There always exists both upward and down-
ward power adjustments at the same time, which can improve the
overall operating efficiency; iii) In terms of the same chiller, the
providing DR capacity is also various at different time instants with the
same total DR capacity, because the PLR is also optimized in response to
the fluctuations of cooling demand.

Table 4
Realistic operating costs analysis between SC and ED methods.

Method Energy costs/¥ Startup costs/¥ Shutdown costs/¥

SC 95,606 2,619 1,388
ED 91,689 1,323 0

Fig. 10. The cooling capacity deviations and temperature variations.

Fig. 11. Specific power adjustments of chillers in DR.
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Finally, the total operating costs are 91,220¥, with 91,157¥ energy
costs, 1,323¥ SUSD costs, and 1,260¥ DR income. Generally speaking,
the operating costs with DR participation approximately are equal to
those without DR, since the consumed energy has little difference by
integrating pre-regulation and post-regulation stages. Therefore, the
CACs significantly contribute to the flexibility enhancement of power
systems without extra energy costs. In addition, the proposed ED method
has achieved 8.49 % operating cost savings with DR, compared with the
conventional PLR-based SC method.

6. Conclusion

To improve the energy efficiency of CACs and provide DR capacity
for power systems, a chance-constrained economic dispatch approach
for building CACs is developed to optimize SUSD scheduling and DR
participation. By implementing the three-stage DR strategy, the
response capacities are effectively expanded within thermal comforts.
Then, the day-ahead ED of CACs is formulated as optimization problems
to minimize total operating costs considering the COP-PLR features and
SUSD constraints, accompanied by an intra-day operation strategy to
accommodate cooling load forecast errors by utilizing thermal inertia
and chance constraints. Several simulations are conducted, and results
prove the effectiveness of the ED method on operating cost saving,
operating reserve allocation, as well as significant contributions to DR
provision. Finally, the total operating costs have been reduced by 8.49 %
compared to the conventional PLR-based SC method.
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